Section 8.1: Resultant

Resultant - the sum of two vectors (or the resulting vector) when two forces are acted upon an object

Use the components to draw the vector
- Draw in the components
- Two Methods
 1.) Tip-to-Tail
 - a.) start at origin
 - b.) draw horizontal component
 - c.) draw vertical component from the tail of 1st vector
 - d.) draw resultant
 2.) Parallelogram Method
 - a.) start at origin
 - b.) draw 1st vector
 - c.) draw 2nd vector
 - d.) make a parallelogram
 - e.) draw diagonal from the origin

Drawing Example:

v = 6 (North) and h = 12 (West)

Tip-to-Tail

Parallelogram Method
8.1: Resultant of 2 vectors

Review Facts:

I. Parallelogram
 * opposite sides congruent
 * opposite angles congruent
 * angles on same-side are supplementary

II. Law of Sines - will not find an obtuse angle

III. Law of Cosines - use when you don't know a side/angle pair (SAS or SSS).

IV. Direction - degrees from positive x-axis to line (CCW)
Parallelogram Method:

Example: find $\vec{a} + \vec{b}$

$\vec{a} = 2.6 \, (128^\circ)$ and $\vec{b} = 4 \, (45^\circ)$

Magnitude of \vec{r}

Given SAS \rightarrow Law of Cosines

$M^2 = 4^2 + 2.6^2 - 2(4)(2.6)\cos 97$

$M = 25.29488$

$M = 5.03$

Direction of \vec{r}

Solve for Θ using Law of Sines

$\frac{\sin 97}{5.03} = \frac{\sin \Theta}{2.6}$

$5.03 \sin \Theta = 2.6 \sin 97$

$5.03 \sin 97$

$\sin^{-1} \left(\frac{2.6 \sin 97}{5.03} \right) = \Theta$

$\Theta = 30.87^\circ$

The resultant is $\vec{r} = 5.03 \, (75.87^\circ)$